Home
Class 12
MATHS
Let f(x) be a function defined as follo...

Let `f(x)` be a function defined as follows: `f(x)=sin(x^2-3x),xlt=0; a n d6x+5x^2,x >0` Then at `x=0,f(x)` has a local maximum has a local minimum is discontinuous (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined as below : f(x)=sin(x^(2)-3x) ,x le 0 =6x+5x^(2), x gt 0 then at x=0 ,f(x)

Let f(x) be a function defined as f(x)={{:(sin(x^2-3x)", "xle0),(6x+5x^2", "xgt0):} Then at x=0,f(x)

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

Find e local maximum and local minima,of the function f(x)=sin x-cos x,0

Write True/False: If f'( c )=0 then f(x) has a local maximum or a local minimum at x=c

Let f(x)=x^(3)-3x^(2)+6 find the point at which f(x) assumes local maximum and local minimum.

Let f(x)={|x|,f or 0<|x|<=2:1, for x=0 Then at x=0,f has (a)a local maximum (b) no local maximum (c)a local minimum (d) no extremum

Let f:RrarrR be function defined by f(x)={(sin(x^2)/2, ifx!=0),(0,if x=0):} Then, at x=0, f is

Let the function f(x) be defined as below f(x)=cos^(-1) mu+x^2 when 0 =1 . f(x) can have a local minimum at x=1 then value of mu is