Home
Class 12
MATHS
सरलतम रूप में लिखे। tan^(-1)""(sqrt(1+...

सरलतम रूप में लिखे।
`tan^(-1)""(sqrt(1+x^(2))-1)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1

tan[(sqrt(1+x^(2))-1)/x] =

tan^-1 [(1)/(sqrt(x^2-1))]

tan^(-1)((1)/(sqrt(x^(2)-1))),|x|>1

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0