Home
Class 12
MATHS
A=[[1,-1,3],[2,1,0],[3,3,1]],3R(3)" and ...

A=[[1,-1,3],[2,1,0],[3,3,1]],3R_(3)" and then "C_(3)+2C_(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the addition of two new matrices A=[[1,-1,32,1,03,3,1]],3R_(3) and then C_(3)+2C_(2)

Apply the given elementary transformation on each of the following matrices: A = [[1,-1,3],[2,1,0],[3,3,1]] , Apply 3R_3 and then C_3+2C_2

If A==[[1, -1, 3], [2, 1, 0], [3, 3, 1]] , then first 3R_3 and then C_3 to C_3 +2C_2 on A gives

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

if A=[[2,-3,3],[2,2,3],[3,-2,2]] then C_2 +2C_1 and then R_1+R_3 gives

Verify that A(B+C)=AB+AC in each of the following matrices A=[[1,-1,3],[2,3,2]],B=[[1,0],[-2,3],[4,3]] and C=[[1,2],[-2,0],[4,-3]]

If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C_(2)+2C_(1) and "then" R_(1)+R_(3) gives

If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C_(2)+2C_(1) and "then" R_(1)+R_(3) gives

If A=[(2,1,3,-1),(1,-2,2,-3)],B=[(2,1,0,3),(1,-1,2,3)] and 2A+3B-5C=O then C=