Home
Class 11
MATHS
" If "x=t^(2),y=t^(3)" then "(d^(2)y)/(d...

" If "x=t^(2),y=t^(3)" then "(d^(2)y)/(dx^(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to