Home
Class 12
MATHS
Prove that =|1 1 1a b c b c+a^2a c+b^2a ...

Prove that `=|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that =|1 1 1 a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Prove that |[1, 1, 1]; [a, b, c]; [ bc+a^2, ac+b^2, ab+c^2]| = 2(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

Without expanding the determinant, prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Show that |{:(1,a,a^2),(1 ,b,b^2),(1,c,c^2):}| =(a-b)(b-c)(c-a)