Home
Class 12
MATHS
" (iv) "|[b^(2)-ab,b-c,bc-ac],[ab-a^(2),...

" (iv) "|[b^(2)-ab,b-c,bc-ac],[ab-a^(2),a-b,b^(2)-ab],[bc-ac,c-a,ab-a^(2)]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: [[b^2-ab,b-c,bc-ac],[ab-a^2,a-b,b^2-ab],[bc-ac,c-a,ab-a^2]]=0

Prove that det[[b^(2)-ab,b-c,bc-acab-a^(2),a-b,b^(2)-abbc-ac,c-a,ab-a^(2)]]=0

Without expanding prove that [{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}]=0

Select and write the correct answer from the given alternatives in each of the following: |(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| =

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

The determinant |(b^2-ab,b-c,-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals :