Home
Class 12
MATHS
[" (1) "rArrquad sin^(-1)x+sin^(-1)y+sin...

[" (1) "rArrquad sin^(-1)x+sin^(-1)y+sin^(-1)z=pi],[x sqrt(1-x^(2))+y sqrt(1-y^(2))+2sqrt(1-z^(2))=?]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

Prove the followings : If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz .

If "sin"^(-1)x+"sin"^(-1)y+"sin"^(-1)z=pi , show that xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1) x +sin^(-1) y + sin^(-1) z =pi , "show that" x sqrt(1-x^2)+y sqrt(1-y^2) +zsqrt(1-z^2)=2 xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z = pi then prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)= 2xyz .