Home
Class 12
MATHS
If lim(x rarr 1)((x+x^2+x^3+....+x^n-n)/...

If `lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820`, then find n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 1} \frac{x + x^2 + x^3 + \ldots + x^n - n}{x - 1} = 820, \] we can follow these steps: ### Step 1: Identify the series and simplify The series \(x + x^2 + x^3 + \ldots + x^n\) is a geometric series. The sum of a geometric series can be expressed as: \[ S_n = \frac{x(1 - x^n)}{1 - x}. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{\frac{x(1 - x^n)}{1 - x} - n}{x - 1}. \] ### Step 2: Substitute and simplify Substituting \(x = 1\) directly leads to an indeterminate form \(0/0\). Therefore, we can apply L'Hôpital's Rule, which states that if we have a limit of the form \(0/0\), we can differentiate the numerator and denominator. ### Step 3: Differentiate the numerator and denominator Differentiate the numerator: 1. The derivative of \(x + x^2 + x^3 + \ldots + x^n\) is: \[ 1 + 2x + 3x^2 + \ldots + nx^{n-1}. \] 2. The derivative of \(-n\) is \(0\). Thus, the derivative of the numerator becomes: \[ 1 + 2x + 3x^2 + \ldots + nx^{n-1}. \] The derivative of the denominator \(x - 1\) is \(1\). ### Step 4: Apply L'Hôpital's Rule Now we can rewrite the limit using L'Hôpital's Rule: \[ \lim_{x \to 1} (1 + 2x + 3x^2 + \ldots + nx^{n-1}). \] ### Step 5: Evaluate the limit Substituting \(x = 1\): \[ 1 + 2(1) + 3(1^2) + \ldots + n(1^{n-1}) = 1 + 2 + 3 + \ldots + n. \] The sum \(1 + 2 + 3 + \ldots + n\) can be calculated using the formula: \[ \frac{n(n + 1)}{2}. \] ### Step 6: Set the equation Setting the above equal to \(820\): \[ \frac{n(n + 1)}{2} = 820. \] Multiplying both sides by \(2\): \[ n(n + 1) = 1640. \] ### Step 7: Rearrange into standard quadratic form Rearranging gives: \[ n^2 + n - 1640 = 0. \] ### Step 8: Solve the quadratic equation Using the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 1\), \(b = 1\), and \(c = -1640\): \[ n = \frac{-1 \pm \sqrt{1 + 6560}}{2} = \frac{-1 \pm \sqrt{6561}}{2}. \] Calculating \(\sqrt{6561} = 81\): \[ n = \frac{-1 + 81}{2} = \frac{80}{2} = 40. \] ### Conclusion Thus, the value of \(n\) is \(40\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr1)(x+x^2+x^3+....+x^n-n)/(x-1)=5050 , then n=

lim_(x rarr 1) (x+x^2+...+x^n-n)/(x-1)=

lim_(x rarr1)((x+x^(2)+x^(3)++x^(n))-n)/(x-1)

If lim _(xto1)(x^(1)+x^(2)+x^(3)+"..."+x^(n)-n)/(x-1)=820,(nin N) then the value of n is equal to

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((1-x)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(n)-1)/(x)