Home
Class 12
MATHS
int0^2||x-1|-x|dx...

`int_0^2||x-1|-x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^2 ||x-1|-x| \, dx \), we need to analyze the expression inside the absolute values and break the integral into manageable parts. ### Step 1: Analyze the expression \( ||x-1|-x| \) First, we need to understand the behavior of the function \( |x-1| \) and \( |x-1|-x \). - For \( x < 1 \): \[ |x-1| = 1-x \quad \text{(since \( x-1 < 0 \))} \] Thus, \[ ||x-1|-x| = |(1-x)-x| = |1-2x| \] - For \( x \geq 1 \): \[ |x-1| = x-1 \quad \text{(since \( x-1 \geq 0 \))} \] Thus, \[ ||x-1|-x| = |(x-1)-x| = |-1| = 1 \] ### Step 2: Break the integral into intervals Now we can break the integral into two parts based on the critical point \( x = 1 \): \[ \int_0^2 ||x-1|-x| \, dx = \int_0^1 |1-2x| \, dx + \int_1^2 1 \, dx \] ### Step 3: Evaluate the first integral \( \int_0^1 |1-2x| \, dx \) For \( x \in [0, 1] \): - At \( x = 0.5 \), \( 1 - 2x = 0 \). Thus, we need to split the integral at \( x = 0.5 \). So we have: \[ \int_0^1 |1-2x| \, dx = \int_0^{0.5} (1-2x) \, dx + \int_{0.5}^1 (2x-1) \, dx \] #### Step 3a: Calculate \( \int_0^{0.5} (1-2x) \, dx \) \[ \int_0^{0.5} (1-2x) \, dx = \left[ x - x^2 \right]_0^{0.5} = \left[ 0.5 - (0.5)^2 \right] - [0 - 0] = 0.5 - 0.25 = 0.25 \] #### Step 3b: Calculate \( \int_{0.5}^1 (2x-1) \, dx \) \[ \int_{0.5}^1 (2x-1) \, dx = \left[ x^2 - x \right]_{0.5}^1 = \left[ 1^2 - 1 \right] - \left[ (0.5)^2 - 0.5 \right] = [0 - 0] - [0.25 - 0.5] = 0 + 0.25 = 0.25 \] So, combining these results: \[ \int_0^1 |1-2x| \, dx = 0.25 + 0.25 = 0.5 \] ### Step 4: Evaluate the second integral \( \int_1^2 1 \, dx \) \[ \int_1^2 1 \, dx = [x]_1^2 = 2 - 1 = 1 \] ### Step 5: Combine the results Now, we can combine the two parts of the integral: \[ \int_0^2 ||x-1|-x| \, dx = 0.5 + 1 = 1.5 \] ### Final Answer Thus, the value of the integral is: \[ \int_0^2 ||x-1|-x| \, dx = \frac{3}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(0)^2 ||x-1|-x| dx is equal to

Evaluate int_(0)^(2)||x-1|-x|dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1 2^(x-[x])dx

int_(0)^(2)(x-1)/(|x-1|)dx

int_(0)^(2)[x-1]dx= Where [x] denotes the

(i) int_1^4(x^2-x)dx (ii) int_0^2(x^2+1) dx

int_0^4(x^2)/(x+1)dx=?

Evaluate int_(0)^(2)([x]+|x-1|)dx

Evaluate "int_(0)^(2)([x]+|x-1|)dx

" Evaluate "int_(0)^(2)([x]+|x-1|)dx