Home
Class 12
MATHS
[" or how many values of "p," the circle...

[" or how many values of "p," the circle "x^(2)+y^(2)+2x+4y-p=0" and the coordinate axes have exactly "],[" nree common points? "]

Promotional Banner

Similar Questions

Explore conceptually related problems

For how many values of p, the circle x^(2)+y^(2)+2x+4y-p=0 and the coordinate axes have exactly three common points ?

For how many values of p,the circle x^(2)+y^(2)+2x+4y-p=0 and the coordinate axes have exactly three common points?

For how many values,of p,the circle x^(2)+y^(2)+2x+4y-p=0 and the coordinate axes have exactly three common points?

For how many values of p, the circle x^2+y^2+2x+4y-p=0 and the coordinate axes have exactly three common points?

For how many values of p, the circle x^2+y^2+2x+4y-p=0 and the coordinate axes have exactly three common points?

A tangent to the circle x^(2)+y^(2)=4 meets the coordinate axes at P and Q. The locus of midpoint of PQ is

Two tangents are drawn from a point P to the circle x^(2)+y^(2)+2gx+2fy+c=0 . If these tangents cut the coordinate axes in concyclic points show hat the locus of P is (x+y+g+f)(x-y+g-f)=0

Two tangents are drawn from a point P to the circle x^(2)+y^(2)+2gx+2fy+c=0 . If these tangents cut the coordinate axes in concyclic points show hat the locus of P is (x+y+g+f)(x-y+g-f)=0

Ilf the circle x^(2)+y^(2)=2 and x^(2)+y^(2)_4x-4y+lamda=0 have exactly three real common tangents then lamda=

lf the circle x^(2)+y^(2)=2 and x^(2)+y^(2)-4x-4y+lamda=0 have exactly three real common tangents then lamda=