Home
Class 11
MATHS
" 12.If "A=[[1,-2,1],[0,1,-1],[3,-1,1]]"...

" 12.If "A=[[1,-2,1],[0,1,-1],[3,-1,1]]" then find "A^(3)-3A^(2)-A-31" where "1" is unit matrix of order "3

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

IF A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-31=O

If A=[[3,1],[-1,2]] prove that A^2-5A+7I=O ,where I is unit matrix of order 2.

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A=([3,23,3]) and B=([1,-(2)/(3)-1,1]) show that AB=I_(2) where I_(2) is the unit matrix of order 2

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If A=({:(2,-1),(-1,2):}) " and " A^(2)-4A+3I=0 where I is the unit matrix of order 2, then find A^(-1) .