Home
Class 14
MATHS
Show that lim(x rarr 0^+) (1+x)^(1/x) =e...

Show that `lim_(x rarr 0^+) (1+x)^(1/x) =e`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1+x)^((1)/(x))=e

prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr0)(1+2x)^((1)/(x)) = e^(2)

lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=

Show that : lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Show that (lim)_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(z))+1)does neg e xi st

Show that, lim_(x rarr 0) log(1+x^(3))/(sin^(3)x) = 1

lim_(x rarr 0) ((1+x+x^2)-e^x)/x^2 =