Home
Class 12
MATHS
Find the value ((1+sin((2pi)/9)+icos((2p...

Find the value `((1+sin((2pi)/9)+icos((2pi)/9))/(1+sin((2pi)/9)-icos((2pi)/9)))^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1 + \sin\left(\frac{2\pi}{9}\right) + i \cos\left(\frac{2\pi}{9}\right)}{1 + \sin\left(\frac{2\pi}{9}\right) - i \cos\left(\frac{2\pi}{9}\right)}\right)^3\), we will follow these steps: ### Step 1: Rewrite the expression in terms of sine and cosine We start with the expression: \[ \frac{1 + \sin\left(\frac{2\pi}{9}\right) + i \cos\left(\frac{2\pi}{9}\right)}{1 + \sin\left(\frac{2\pi}{9}\right) - i \cos\left(\frac{2\pi}{9}\right)} \] ### Step 2: Use the identity for sine and cosine Recall that \( \sin\left(\frac{2\pi}{9}\right) = \cos\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) \) and \( \cos\left(\frac{2\pi}{9}\right) = \sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) \). Thus, we can rewrite the expression in terms of sine and cosine. ### Step 3: Simplify the numerator and denominator The numerator becomes: \[ 1 + \sin\left(\frac{2\pi}{9}\right) + i \cos\left(\frac{2\pi}{9}\right) = 1 + \sin\left(\frac{2\pi}{9}\right) + i\left(\sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)\right) \] The denominator becomes: \[ 1 + \sin\left(\frac{2\pi}{9}\right) - i \cos\left(\frac{2\pi}{9}\right) = 1 + \sin\left(\frac{2\pi}{9}\right) - i\left(\sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)\right) \] ### Step 4: Factor out common terms Let \( a = 1 + \sin\left(\frac{2\pi}{9}\right) \) and \( b = \cos\left(\frac{2\pi}{9}\right) \). The expression can be rewritten as: \[ \frac{a + ib}{a - ib} \] ### Step 5: Multiply by the conjugate To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(a + ib)(a + ib)}{(a - ib)(a + ib)} = \frac{a^2 + 2abi - b^2}{a^2 + b^2} \] ### Step 6: Simplify further The denominator simplifies to \( a^2 + b^2 \) and the numerator simplifies to \( a^2 - b^2 + 2abi \). ### Step 7: Convert to polar form Now, we can express the result in polar form. The argument of the complex number can be determined using the arctangent function. ### Step 8: Raise to the power of 3 Finally, we raise the result to the power of 3: \[ \left(\text{result}\right)^3 \] ### Final Answer After performing these calculations, we find the final value of the original expression.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(sin((2pi)/3))

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

The value of (1+cos((pi)/(9)))(1+cos((3 pi)/(9)))(1+cos((5 pi)/(9)))(1+cos((7 pi)/(9)))

sin((13pi)/3)sin((8pi)/3)+cos((2pi)/3)sin((5pi)/6)=1/2

The value of ("sin"(pi)/(9))(4+"sec"(pi)/(9)) is :

The value of sum_(r=1)^(8)(sin(2rpi)/9+icos(2rpi)/9) , is

The value of sin^(-1)((cos(pi/9))

Solve cos(pi/9)+cos(pi/3)+cos((5pi)/(9))+cos((7pi)/(9)) ?

Hence deduce that cos(pi)/(9)cos(2 pi)/(9)cos(3 pi)/(9)cos(4 pi)/(9)=(1)/(16)