Home
Class 14
MATHS
(sqrt(?)-1)^(2)=8-sqrt(28)...

`(sqrt(?)-1)^(2)=8-sqrt(28)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(x)-1)^(2)=8-sqrt(28) find the value of x

The simplest form of (sqrt(8+sqrt28)-sqrt(8-sqrt(28)))/(sqrt(8+sqrt(28))+sqrt(8-sqrt(28)))

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7))-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5