Home
Class 11
PHYSICS
For a particle of a mass 100 gm, positio...

For a particle of a mass `100 gm`, position and velocity at any instant are given as `10 hat i+ 6 hat j cm` and `vec v = 5 hat I cm//s`. Calculate the angular momentum about the point (1,1) cm.

Promotional Banner

Similar Questions

Explore conceptually related problems

The unit mass has r = 8 hat(i) - 4 hat(j) and v = 8 hat(i) + 4 hat(j) . Its angular momentum is

A particle of mass 2 kg located at the position (hat i+ hat k) m has a velocity 2(+ hat i- hat j + hat k) m//s . Its angular momentum about z- axis in kg-m^(2)//s is :

A particle of mass 2 mg located at the position (hat i+ hat k) m has a velocity 2(+ hat i- hat j + hat k) m//s . Its angular momentum about z- axis in kg-m^(2)//s is :

A particle of mass m moves in the xy-plane with velocity of vec v = v_x hat i+ v_y hat j . When its position vector is vec r = x vec i + y vec j , the angular momentum of the particle about the origin is.

vecF = a hat i + 3hat j+ 6 hat k and vec r = 2hat i-6hat j -12 hat k . The value of a for which the angular momentum is conserved is

vecF = a hat i + 3hat j+ 6 hat k and vec r = 2hat i-6hat j -12 hat k . The value of a for which the angular momentum is conserved is

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is