Home
Class 12
MATHS
cos^(-1)(cos20) and sin^(-1)(sin((23pi)/...

`cos^(-1)(cos20) and sin^(-1)(sin((23pi)/6))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos^(-1)(sin((7 pi)/6))

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

The values of Sin^(-1)(cos{Cos^(-1)(cosx)+Sin^(-1)(sinx)})" where "x in (pi/2, pi) is

If cos ^(-1) x+sin ^(-1) (x)/(2)=(pi)/(6) then x=

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Prove that, sin((8pi)/(3))cos((23pi)/(6))+cos((13pi)/(3))sin((35pi)/(6))=(1)/(2)

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

Solve the equation sqrt(|sin^(-1)| cos x|| + |cos^(-1)| sin x||) = sin^(-1)|cos x | -cos^(-1)| sin x|, (-pi)/(2) le x le (pi)/(2)