Home
Class 12
MATHS
If tan alpha tan beta are the roots of ...

If `tan alpha tan beta` are the roots of the equation `x^2 + px +q =0(p!=0)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha , tan beta are the roots of the equation x^(2) + px+q=0(p ne 0) then

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p != 0) Then sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta)=

If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p != 0) Then sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta)=

If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p != 0) Then sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta)=

If tan alpha,tan beta are th roots of the eqution x^(2)+px+q=0(p!=0) Then sin^(2)(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+q cos^(2)(alpha+beta)=

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=