Home
Class 12
MATHS
Find the imaginary part of ((3+2sqrt(-54...

Find the imaginary part of `((3+2sqrt(-54))^(1/2)-(3-2sqrt(-54))^(1/2))`

A

`-sqrt(6)`

B

`-2sqrt(6)`

C

`sqrt(6)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the imaginary part of the expression \( \left( (3 + 2\sqrt{-54})^{1/2} - (3 - 2\sqrt{-54})^{1/2} \right) \), we will follow these steps: ### Step 1: Simplify the square roots First, we rewrite the square roots of the complex numbers. Since \( \sqrt{-54} = \sqrt{54}i = 3\sqrt{6}i \), we can rewrite the expression as: \[ 3 + 2\sqrt{-54} = 3 + 2(3\sqrt{6}i) = 3 + 6\sqrt{6}i \] \[ 3 - 2\sqrt{-54} = 3 - 2(3\sqrt{6}i) = 3 - 6\sqrt{6}i \] ### Step 2: Define the complex numbers Let: \[ z_1 = 3 + 6\sqrt{6}i \] \[ z_2 = 3 - 6\sqrt{6}i \] ### Step 3: Find the square roots of \( z_1 \) and \( z_2 \) To find the square roots of a complex number \( z = a + bi \), we use the formula: \[ \sqrt{z} = \sqrt{r} \left( \cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right) \right) \] where \( r = \sqrt{a^2 + b^2} \) and \( \theta = \tan^{-1}\left(\frac{b}{a}\right) \). Calculating \( r_1 \) for \( z_1 \): \[ r_1 = \sqrt{3^2 + (6\sqrt{6})^2} = \sqrt{9 + 216} = \sqrt{225} = 15 \] Calculating \( r_2 \) for \( z_2 \): \[ r_2 = \sqrt{3^2 + (-6\sqrt{6})^2} = \sqrt{9 + 216} = \sqrt{225} = 15 \] ### Step 4: Find the angles For \( z_1 \): \[ \theta_1 = \tan^{-1}\left(\frac{6\sqrt{6}}{3}\right) = \tan^{-1}(2\sqrt{6}) \] For \( z_2 \): \[ \theta_2 = \tan^{-1}\left(\frac{-6\sqrt{6}}{3}\right) = \tan^{-1}(-2\sqrt{6}) \] ### Step 5: Calculate the square roots Thus, we have: \[ \sqrt{z_1} = \sqrt{15} \left( \cos\left(\frac{\theta_1}{2}\right) + i\sin\left(\frac{\theta_1}{2}\right) \right) \] \[ \sqrt{z_2} = \sqrt{15} \left( \cos\left(\frac{\theta_2}{2}\right) + i\sin\left(\frac{\theta_2}{2}\right) \right) \] ### Step 6: Subtract the square roots Now we need to find: \[ \sqrt{z_1} - \sqrt{z_2} \] This will give us a complex number whose imaginary part we need to find. ### Step 7: Find the imaginary part The imaginary part of \( \sqrt{z_1} - \sqrt{z_2} \) can be calculated as: \[ \text{Imaginary part} = \sqrt{15}\left(\sin\left(\frac{\theta_1}{2}\right) - \sin\left(\frac{\theta_2}{2}\right)\right) \] Since \( \sin\left(\frac{\theta_2}{2}\right) = -\sin\left(\frac{\theta_1}{2}\right) \), we have: \[ \text{Imaginary part} = \sqrt{15}\left(\sin\left(\frac{\theta_1}{2}\right) + \sin\left(\frac{\theta_1}{2}\right)\right) = 2\sqrt{15}\sin\left(\frac{\theta_1}{2}\right) \] ### Conclusion Thus, the imaginary part of the expression \( \left( (3 + 2\sqrt{-54})^{1/2} - (3 - 2\sqrt{-54})^{1/2} \right) \) is \( 2\sqrt{15}\sin\left(\frac{\theta_1}{2}\right) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2)

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

1+2sqrt(3)-1sqrt(3)

(1+2sqrt(3))/(2-sqrt(3))

60sqrt((1)/(6))+3sqrt(54)-12sqrt((1)/(24))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

sqrt(11449)xxsqrt(6241)-(54)^(2)=sqrt(?)+(74)^(2)

Evaluate : ((1)/(sqrt(3)))^(2)times(2)/(sqrt(3))+((1)/(2))^(2)

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)