Home
Class 12
MATHS
If a,b,c in R such that a^3+b^3+c^3=2 an...

If `a,b,c in R` such that `a^3+b^3+c^3=2` and `|[a,b,c],[b,c,a],[c,a,b]|=0` then find `abc`

A

`2/3`

B

`-2/3`

C

`1/3`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( abc \) given the conditions \( a^3 + b^3 + c^3 = 2 \) and the determinant \( |[a,b,c],[b,c,a],[c,a,b]| = 0 \). ### Step-by-Step Solution: 1. **Understanding the Determinant Condition**: The determinant condition \( |[a,b,c],[b,c,a],[c,a,b]| = 0 \) implies that the rows (or columns) of the matrix are linearly dependent. This means that there exist constants \( x, y, z \) (not all zero) such that: \[ x[a, b, c] + y[b, c, a] + z[c, a, b] = 0 \] This can also be interpreted as a relation among \( a, b, c \). 2. **Calculating the Determinant**: We can compute the determinant: \[ |[a,b,c],[b,c,a],[c,a,b]| = a(bc - ac) - b(bc - ab) + c(ab - b^2) \] Expanding this gives: \[ = abc - a^2b - b^2c + ab^2 + ac^2 - b^2c = 0 \] Rearranging terms leads to: \[ a^2b + b^2c + c^2a = abc \] 3. **Using the Identity for Cubes**: We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Given \( a^3 + b^3 + c^3 = 2 \), we have: \[ 2 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] 4. **Finding Relationships**: Since \( a^2b + b^2c + c^2a = abc \), we can substitute \( abc \) in the identity: \[ 2 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This means \( a+b+c \) and \( a^2 + b^2 + c^2 - ab - ac - bc \) must also satisfy certain conditions. 5. **Expressing \( abc \)**: From the determinant condition and the cube sum, we can derive: \[ abc = \frac{a^3 + b^3 + c^3}{3} \] Substituting the known value: \[ abc = \frac{2}{3} \] ### Final Result: Thus, the value of \( abc \) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if abc!=0 and if |[a,b,c],[b,c,a],[c,a,b]|=0 then (a^3+b^3+c^3)/(abc)=

If a+b=c , show that a^(3)+b^(3)+3abc=c^(3)

Let a,b,c in R be such that a+b+c gt 0 and abc = 2 . Let A = [(a,b,c),(b,c,a),(c,a,b)] If A^(2)=I then value of a^(3)+b^(3)+c^(3) is

If a!=6,b,c satisfy det[[a,2b,2c3,b,c4,a,b]]=0, then abc

If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

If a+b+c= 0 find a^(3) + b^(3) + c^(3) + 3abc

If a,b,c are in A.P,show that (i)a^(3)+b^(3)+6abc=8b^(3)( ii) (a+2b-c)(2b+c-a)(a+c-b)=4abc

11. If a, b,c in R-{0}, such that a!=b!=c, then the matrix [[0,(a-b)^3,(a-c)^3],[(b-a)^3,0,(b-c)^3],[[c-a)^3,(c-b)^3,0]] is (A) symmetric (B) singular (C) non-singular (D) invertible

If a, b, c are real, a^(3)+b^(3)+c^(3)=3abc and a+b+c ne 0 , then relation between a, b, c will be