Home
Class 12
MATHS
int1^2|2x-[3x]|dx=...

`int_1^2|2x-[3x]|dx=`

A

1

B

3

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^2 |2x - [3x]| \, dx \), we need to analyze the expression inside the absolute value. Here’s a step-by-step breakdown of the solution: ### Step 1: Analyze the expression \( |2x - [3x]| \) The term \( [3x] \) is the greatest integer function (or floor function) of \( 3x \). We need to determine how \( [3x] \) behaves in the interval from \( x = 1 \) to \( x = 2 \). - For \( x = 1 \): \( 3x = 3 \) and \( [3] = 3 \) - For \( x = 2 \): \( 3x = 6 \) and \( [6] = 6 \) Now, we can find the values of \( [3x] \) in the interval \( [1, 2] \): - For \( 1 \leq x < \frac{4}{3} \) (i.e., \( 1 \leq 3x < 4 \)): \( [3x] = 3 \) - For \( \frac{4}{3} \leq x < \frac{5}{3} \) (i.e., \( 4 \leq 3x < 5 \)): \( [3x] = 4 \) - For \( \frac{5}{3} \leq x < 2 \) (i.e., \( 5 \leq 3x < 6 \)): \( [3x] = 5 \) ### Step 2: Break the integral into intervals Now, we can break the integral into three parts based on the intervals we found: 1. From \( x = 1 \) to \( x = \frac{4}{3} \) 2. From \( x = \frac{4}{3} \) to \( x = \frac{5}{3} \) 3. From \( x = \frac{5}{3} \) to \( x = 2 \) ### Step 3: Evaluate the integral in each interval **Interval 1: \( [1, \frac{4}{3}) \)** In this interval, \( [3x] = 3 \): \[ |2x - [3x]| = |2x - 3| = 3 - 2x \quad (\text{since } 2x < 3) \] Thus, the integral becomes: \[ \int_1^{\frac{4}{3}} (3 - 2x) \, dx \] Calculating this integral: \[ = \left[ 3x - x^2 \right]_1^{\frac{4}{3}} = \left( 3 \cdot \frac{4}{3} - \left( \frac{4}{3} \right)^2 \right) - \left( 3 \cdot 1 - 1^2 \right) \] \[ = \left( 4 - \frac{16}{9} \right) - (3 - 1) = \left( \frac{36}{9} - \frac{16}{9} \right) - 2 = \frac{20}{9} - 2 = \frac{20}{9} - \frac{18}{9} = \frac{2}{9} \] **Interval 2: \( [\frac{4}{3}, \frac{5}{3}) \)** In this interval, \( [3x] = 4 \): \[ |2x - [3x]| = |2x - 4| = 2x - 4 \quad (\text{since } 2x > 4) \] Thus, the integral becomes: \[ \int_{\frac{4}{3}}^{\frac{5}{3}} (2x - 4) \, dx \] Calculating this integral: \[ = \left[ x^2 - 4x \right]_{\frac{4}{3}}^{\frac{5}{3}} = \left( \left( \frac{5}{3} \right)^2 - 4 \cdot \frac{5}{3} \right) - \left( \left( \frac{4}{3} \right)^2 - 4 \cdot \frac{4}{3} \right) \] \[ = \left( \frac{25}{9} - \frac{20}{3} \right) - \left( \frac{16}{9} - \frac{16}{3} \right) \] \[ = \left( \frac{25}{9} - \frac{60}{9} \right) - \left( \frac{16}{9} - \frac{48}{9} \right) = \left( -\frac{35}{9} \right) - \left( -\frac{32}{9} \right) = -\frac{35}{9} + \frac{32}{9} = -\frac{3}{9} = -\frac{1}{3} \] **Interval 3: \( [\frac{5}{3}, 2] \)** In this interval, \( [3x] = 5 \): \[ |2x - [3x]| = |2x - 5| = 5 - 2x \quad (\text{since } 2x < 5) \] Thus, the integral becomes: \[ \int_{\frac{5}{3}}^{2} (5 - 2x) \, dx \] Calculating this integral: \[ = \left[ 5x - x^2 \right]_{\frac{5}{3}}^{2} = \left( 5 \cdot 2 - 2^2 \right) - \left( 5 \cdot \frac{5}{3} - \left( \frac{5}{3} \right)^2 \right) \] \[ = (10 - 4) - \left( \frac{25}{3} - \frac{25}{9} \right) = 6 - \left( \frac{75}{9} - \frac{25}{9} \right) = 6 - \frac{50}{9} = \frac{54}{9} - \frac{50}{9} = \frac{4}{9} \] ### Step 4: Combine the results Now, we sum up the results from all three intervals: \[ \text{Total} = \frac{2}{9} - \frac{1}{3} + \frac{4}{9} \] Converting \( -\frac{1}{3} \) to ninths: \[ -\frac{1}{3} = -\frac{3}{9} \] Thus, \[ \text{Total} = \frac{2}{9} - \frac{3}{9} + \frac{4}{9} = \frac{2 - 3 + 4}{9} = \frac{3}{9} = \frac{1}{3} \] ### Final Answer The value of the integral \( \int_1^2 |2x - [3x]| \, dx = \frac{1}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to x. Then the value of int_(1)^(2)|2x-[3x]|dx is ______

Integrate int_1^2x^3dx

Evaluate: int_(0)^(1)|5x-3|dx( ii) int_(0)^( pi)|cos x|dx( iii) int_(-5)^(5)|x-2|dx( iv )int_(-1)^(1)e^(|x|)dx(v)int_(0)^(2)|x^(2)+2x-3|dx(v)int_(1)^(4)(|x-1|+|x-2|+|x-3|)dx( vi) int_(1)^(2)|x^(3)-x|dx

int_1^2(3x-4)dx=?

int_(1)^(2)|x^(2)-3x+2|dx=?

int(1)/(x^(2)-2x-3)dx=

Find int_1^(3) [x^2-2x-2]dx

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

6. int(1-x^2)/(x-2x^3)dx

int(1+x^(2))/(2+3x)dx