Home
Class 12
MATHS
lim(x rarr 0)tan(pi/4+x)^(1/x)=...

`lim_(x rarr 0)tan(pi/4+x)^(1/x)=`

A

e

B

`e^2`

C

`e^4`

D

`1/e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \tan\left(\frac{\pi}{4} + x\right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the expression inside the limit: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan(x)}{1 - \tan\left(\frac{\pi}{4}\right)\tan(x)} \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan(x)}{1 - \tan(x)} \] ### Step 2: Substitute into the limit Now, substituting this back into the limit, we have: \[ \lim_{x \to 0} \left(\frac{1 + \tan(x)}{1 - \tan(x)}\right)^{\frac{1}{x}} \] ### Step 3: Analyze the limit form As \( x \to 0 \), \( \tan(x) \to 0 \). Thus, we can express this limit in the form of \( 1 + f(x) \): \[ \lim_{x \to 0} \left(1 + \frac{2\tan(x)}{1 - \tan(x)}\right)^{\frac{1}{x}} \] This can be simplified as: \[ \lim_{x \to 0} \left(1 + 2\tan(x)\right)^{\frac{1}{x}} \] ### Step 4: Use the exponential limit We know that if \( f(x) \to 0 \) and \( g(x) \to \infty \), then: \[ \lim_{x \to a} (1 + f(x))^{g(x)} = e^{\lim_{x \to a} f(x)g(x)} \] Here, we have \( f(x) = 2\tan(x) \) and \( g(x) = \frac{1}{x} \). ### Step 5: Calculate the limit of \( f(x)g(x) \) Now we compute: \[ \lim_{x \to 0} 2\tan(x) \cdot \frac{1}{x} \] Using the fact that \( \tan(x) \sim x \) as \( x \to 0 \): \[ \lim_{x \to 0} 2 \cdot \frac{\tan(x)}{x} = 2 \cdot 1 = 2 \] ### Step 6: Final limit calculation Thus, we have: \[ \lim_{x \to 0} \tan\left(\frac{\pi}{4} + x\right)^{\frac{1}{x}} = e^{2} \] ### Conclusion The final answer is: \[ \boxed{e^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x rarr0){tan((pi)/(4)+x)}^(1/x)

lim_(x rarr0)((tan x)/(x))^(1/x)

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x)/(x)

If lim_(x rarr0)((tan((pi)/(4)+x))^((1)/(x))-e^(2))/(x^(2)) is equal to ((p)/(q))e^(2),(pq varepsilon N), then find minimum value of(p+q)

lim_(x rarr0) [(tan x)/(x)]

lim_(x rarr0)(tan x)/(sin^(2)x)

Prove that lim_(x rarr0)(tan x^(@))/(x)=(pi)/(180)

lim_(x rarr0)(tan x^(3))/(x)

lim_(x rarr0)(tan x^(@))/(x)