Home
Class 12
MATHS
If y=sum(k=1)^6 K cos^(-1)(3/5coskx-4/5s...

If `y=sum_(k=1)^6 K cos^(-1)(3/5coskx-4/5sinkx)` then `(dy)/(dx)=`

A

92

B

91

C

90

D

89

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y \) with respect to \( x \). The function is defined as: \[ y = \sum_{k=1}^{6} k \cos^{-1} \left( \frac{3}{5} \cos(kx) - \frac{4}{5} \sin(kx) \right) \] ### Step 1: Simplifying the Argument of the Inverse Cosine We can rewrite the argument of the inverse cosine function using the cosine addition formula. We know that: \[ \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) = \cos(\alpha + \beta) \] Let \( \alpha = \cos^{-1} \left( \frac{3}{5} \right) \) and \( \beta = kx \). Thus, we can express the argument as: \[ \frac{3}{5} \cos(kx) - \frac{4}{5} \sin(kx) = \cos\left(kx + \alpha\right) \] Now, substituting this back into the equation for \( y \): \[ y = \sum_{k=1}^{6} k \cos^{-1} \left( \cos\left(kx + \alpha\right) \right) \] ### Step 2: Using the Property of Inverse Cosine Since \( \cos^{-1}(\cos(\theta)) = \theta \) for \( \theta \) in the range of \( \cos^{-1} \), we can simplify further: \[ y = \sum_{k=1}^{6} k \left(kx + \alpha\right) \] ### Step 3: Expanding the Summation Now we can expand the summation: \[ y = \sum_{k=1}^{6} k^2 x + \sum_{k=1}^{6} k \alpha \] ### Step 4: Calculating the Summations 1. The first summation \( \sum_{k=1}^{6} k^2 \) can be calculated using the formula: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] For \( n = 6 \): \[ \sum_{k=1}^{6} k^2 = \frac{6(6+1)(2 \cdot 6 + 1)}{6} = \frac{6 \cdot 7 \cdot 13}{6} = 91 \] 2. The second summation \( \sum_{k=1}^{6} k \) is: \[ \sum_{k=1}^{6} k = \frac{6(6+1)}{2} = 21 \] Thus, we can write: \[ y = 91x + 21\alpha \] ### Step 5: Differentiating with Respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 91 \] ### Final Answer Thus, the final answer for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 91 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos ^(-1) ((3cos x-4sin x )/( 5) ) ,then (dy)/(dx)=

If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

If y=cos ^(-1) ((3sin x +4cos x)/( 5)),then (dy)/(dx) =

If y=cos^(-1)(4sqrtx),"then "dy/dx=

If y=(sin^(-1)x)/(cos^(-1)x)," then "(dy)/(dx)=(k)/((cos^(-1)x)^(2)sqrt(1-x^(2)))," where "k=

If y=cos^(-1)((3x+4sqrt(1-x^(2)))/(5)), find (dy)/(dx)

If y=(cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cos x) then (dy)/(dx) equals to

If I=sum_(k=1)^(98)int_(k)^(k+1)(k+1)/(x(x+1))dx , then

If I=sum_(k=2)^(10)int_(k)^(k^(2))(k-1)/(x(x-1))dx, then