Home
Class 11
MATHS
Given y=f(u) and u=g(x) Find (dy)/(dx) i...

Given `y=f(u)` and `u=g(x)` Find `(dy)/(dx)` if `y=2u^3, u=8x-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given y = f(u) and u = g(x). Find (dy)/(dx) . y = sin u, u = 3x + 1

U=x^y find (dU)/dx

Find dy/dx if : y=9u^(2),u=1-3/2x^(2)

Find dy/dx if : y = 9u^2, u = 1 - 3/2x^2

If y=2+sqrtu and u=x^(3)+1 , then (dy)/(dx)=

If y = f(u) is a differentiable functions of u and u = g(x) is a differentiable functions of x such that the composite functions y = f[g(x) ] is a differentiable functions of x then (dy)/(dx) = (dy)/(du) . (du)/(dx) Hence find (dy)/(dx) if y = sin ^(2)x

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

Find (dy)/(dx) when y=u^(3) and u=sqrt(6x^(2)-2x+1)