Home
Class 12
MATHS
Evaluate int f(x) is polynomaial functi...

Evaluate `int f(x)` is polynomaial function of then the degree, prove that `int e^x f(x) dx=e^x[f(x) f'(x)+f^x=f^x+......+(-1)^n f^n (x)]` where `f^n(x) dx+(d^nf)/(dx^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)[f(x)+f'(x)]dx=

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

int[f(x)+x.f'(x)]dx=

inte^(x).[f(x)-f''(x)]dx=

If f(x) is a polynomial of nth degree then int e^(x)f(x)dx= Where f^(n)(x) denotes nth order derivative of f(x)w.r.t.x

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

If int x f (x) dx = (f (x))/( 2) then f (x) = e ^(x ^(2))

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

prove the following int e^(g(x)){f(x)*g'(x)+f'(x)}dx=e^(g(x))f(x)+c