Home
Class 11
MATHS
Prove that (cos x + cos y)^(2) + (sin ...

Prove that `(cos x + cos y)^(2) + (sin x + sin y)^(2) = 4 cos^(2) ((x-y)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

Prove that: (cos x + cos y)^2 + (sin x -sin y)^2 = 4 cos^2frac (x+y)(2)

Prove that (cos x- cos y ) ^2 + ( sin x - sin y ) ^2 = 4 sin ^2"" ((x-y))/(2)

Prove that: quad (cos x+cos y)^(2)+(sin x-sin y)^(2)=4cos^(2)(x+y)/(2)

Prove that (cos x-cos y)^(2)+(sin x-sin y)^(2)=4 sin ^(2)((x-y)/(2))