Home
Class 12
MATHS
Prove that int0^x [x]dx=x[x]-1/2[x] ([x]...

Prove that `int_0^x [x]dx=x[x]-1/2[x] ([x]+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^1x e^x dx=1

Prove that int_(-1)x|x|dx=0

Prove that: int_(-1)^(1)x|x|dx=0

int_0^1 (x+x^2)dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

int_0^2||x-1|-x|dx