Home
Class 12
MATHS
show that int0^x({x}-1/2)dx=1/2{x}^2-1/2...

show that `int_0^x({x}-1/2)dx=1/2{x}^2-1/2{x}` ,where denotes the fractional part of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Show that: int_0^[[x]] (x-[x])dx=[[x]]/2 , where [x] denotes the integral part of x .

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.