Home
Class 11
MATHS
Domain of f(x)=sin^-1(([x])/({x})), whe...

Domain of `f(x)=sin^-1(([x])/({x}))`, where [.] and {.} denote the greatest integer function and fracticrespectively, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is