Home
Class 12
MATHS
int0^1 (x^(alpha)-1)/logx dx=...

`int_0^1 (x^(alpha)-1)/logx dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(x^(a)-1)/(logx)dx is

Prove that int _0^1(x^7-1)/(logx)dx

int (logx-1)/((logx)^(2)) dx =

int(1)/(x(logx))dx=

int_(0)^(1) x logx dx

int (x-1)/(x(x-logx))dx

int(x^(x))^(2)(1+logx)dx=

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)