Home
Class 12
MATHS
The value of e^(loge x+log(sqrte) x)+log...

The value of `e^(log_e x+log_(sqrte) x)+log_(e^(1/3)) x+...+log_(e^(1/10)) x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

Evaluate: int(log_(e x)e*log_(e^2x)e*log_(e^3x)e)/x dx

Evaluate int(log_(ex)e*log_(e^(2)x)e*log_(e^(3)x)e)/(x)dx .

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

1+log_e x+ (log_e x)^2/2!+(log_e x)^3/3!+...=

The value of int_1^e 10^(log_e x) dx is equal to

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then