Home
Class 12
MATHS
For any two vectors veca and vecb, prove...

For any two vectors `veca and vecb,` prove that `((veca )/(|vec a |^2)-(vecb)/(| vec b|^2))^2=(( vec a -vecb)/(| vec a || vec b |))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |veca+vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

For any two vectors veca and vec b show that |vec a.vec b|le |vec a|.|vecb|

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

For two vectors veca and vec b , (veca. vecb)^2+(vec axxvec b)^2 =