Home
Class 10
MATHS
f(x)=4x^(4)-20x^(3)+23x^(2)+5x-6x=2,x=3...

f(x)=4x^(4)-20x^(3)+23x^(2)+5x-6x=2,x=3

Promotional Banner

Similar Questions

Explore conceptually related problems

Find all the zeroes of 4x^(4)-20x^(3)+23x^(2)+5x-6 if two of its zeroes are 2&3.

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

Let f(x)=x^(4)-4x^(3)+6x^(2)-4x+1 Then ,

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : (i) f(x)=5x^(3)+x^(2)-5x-1, g(x)=x+1 (ii) f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1 (iii) f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2 (iv) f(x)=3cx^(3)+x^(2)-20x+12,g(x)=3x-2 f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

f(x)=3x^(4)-4x^(3)+6x^(2)-12x+12 decreases in

The HCF of p(x) = 26(6x^(4) - x^(3) - 2x^(2)) and q(x) = 20 (2x^(6) + 3x^(5) + x^(4)) is

Let f(x)=(x-2)(x^(4)-4x^(3)+6x^(2)-4x+1) then value of local minimum of f is

(5x^(2)-4+6x^(3))-:(-2+3x)