Home
Class 10
MATHS
Q1." If "a^(x)=b^(y)=c^(z)" and "b^(2)=a...

Q1." If "a^(x)=b^(y)=c^(z)" and "b^(2)=ac," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

Given, a=2^(x), b=4^(y), c=8^( z) and ac = b^(2) . Find the relation x,y and z.

IF a^x=b^y=c^z,b^2=ac then 1/x+1/z =

If x^(a) = y^(b) = z^ (c ) and y^(2) = xz, prove that b= ( 2ac)/( a+c)

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero