Home
Class 12
MATHS
Let a function f : [a, oo) -> [b, oo) a...

Let a function `f : [a, oo) -> [b, oo)` and `f(x) = e^x / x^2` is invertible, then for minimum possible value of `a`, the value of `[a sqrtb]` is (where `[.]` is greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to oo) ([x])/(x) (where[.] denotes greatest integer function )=

If the function f:[1, oo) rarr [ 1,oo) defined by f(x) = 2^(x(x -1)) is invertible, then find f^(-1) (x).

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f:R rarr[-1,oo] and f(x)=ln([sin2x|+|cos2x|]) (where[.] is greatest integer function),then- -

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

Evaluate: int_(0)^(oo)[2e^(-x)]dx, where [x] represents greatest integer function.

Let f: [-3, 3] rarr R where f(x)=x^(2) + sin x + [(x^(2)+2)/(a)] be an odd function then the value of a is ( where [.] represents greatest integer function)