Home
Class 12
MATHS
Let a continuous onto function f : [0, 4...

Let a continuous onto function `f : [0, 4] -> [1,3]` is such that `f(0) = f(2) = f(4), = 3` and `f(1) = f(3) = 1`, then minimum number of tangents parallel to x-axis on ` f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then :

Let f(x) is a continuous function such that f(-1) = -2,f(0) = -1,f(1) = 0,f (2) = 1, f(3) = 0,f (4) = -1 and f(5) = 1 then minimum number of roots of f'(x) + xf " (x) = 0 in the interval (-1,5) are

If f is a function such that f(0) = 2, f(1) = 3, f(x+2) = 2f(x) - f(x + 1), then f(5) is

Let f : R to R be a continuous onto function satisfying f(x)+f(-x) = 0, forall x in R . If f(-3) = 2 and f(5) = 4 in [-5, 5], then what is the minimum number of roots of the equation f(x) = 0?

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in R . If f(-3)=2 \ a n d \ f(5)=4 \ i n \ [-5,5], then the minimum number of roots of the equation f(x)=0 is

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in R . If f(-3)=2 \ a n d \ f(5)=4 \ i n \ [-5,5], then the minimum number of roots of the equation f(x)=0 is

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in R . If f(-3)=2 \ a n d \ f(5)=4 \ i n \ [-5,5], then the minimum number of roots of the equation f(x)=0 is

Let f:R rarr R be a continuous onto function satisfying f(x)+f(-x)=0AA x in R. If f(-3)=2 and f(5)=4 in [-5,5], then the minimum number of roots of the equation f(x)=0 is