Home
Class 12
MATHS
The scalarsla n dm such that l vec a+m v...

The scalars`la n dm` such that `l vec a+m vec b= vec c ,w h e r e vec a , vec ba n d vec c` are given vectors, are equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The scalars l and m such that l vec a+m vec b= vec c ,where vec a , vec b and vec c are given vectors, are equal to

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then (a) vec a , vec b ,a n d vec c can be coplanar (b) vec a , vec b ,a n d vec c must be coplanar (c) vec a , vec b ,a n d vec c cannot be coplanar (d)none of these

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)