Home
Class 12
MATHS
If l ,\ m ,\ n are scalars and vec a ,\...

If `l ,\ m ,\ n` are scalars and ` vec a ,\ vec b ,\ vec c` are vectors, prove that `|l vec a+m vec b+n vec c|^2=l^2| vec a|^2+m^2|| vec b|^2+n^2| vec c|^2+2\ {l m( vec adot vec b)+m n( vec bdot vec c)+n l( vec cdot vec a)}` . Also deduce that `|l vec a+m vec b+n vec c|^2=l^2 vec|a|^2+m^2| vec b|^2+n^2| vec c|^2if\ vec a ,\ vec b ,\ vec c` are mutually perpendicular vectors.

Promotional Banner

Similar Questions

Explore conceptually related problems

If l ,\ m ,\ n are scalars and vec a ,\ vec b ,\ vec c are vectors, prove that |l vec a+m vec b+n vec c|^2=l^2| vec a|^2+m^2| vec b|^2+n^2 | vec c|^2+2\ {l m( vec a . vec b)+m n( vec b . vec c)+n l( vec c . vec a)} . Also deduce that |l vec a+m vec b+n vec c|^2=l^2 |vec a|^2+m^2| vec b|^2+n^2| vec c|^2if\ vec a ,\ vec b ,\ vec c are mutually perpendicular vectors.

For any three vectors vec a , vec b , vec c , prove that | vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)

For any three vectors vec a,vec b,vec c, prove that |vec a+vec b+vec c|^(2)=|vec a|^(2)+|vec b|^(2)+|vec c|^(2)+2(vec adot b+vec bvec c+vec c+vec a)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .