Home
Class 12
MATHS
If vec d= vec axx vec b+ vec bxx vec c+...

If ` vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a` is non-zero vector and `|( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0,` then a.`| vec a|=| vec b|=| vec c|` b. `| vec a|+| vec b|+| vec c|=|d|` c. ` vec a , vec b ,a n d vec c` are coplanar d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec d=vec a xxvec b+vec b xxvec c+vec c xxvec a is non-zero vector and |(vec d*vec c)(vec a xxvec b)+(vec d*vec a)(vec b xxvec c)+(vec d*vec b)(vec c xxvec a)|=0 then a.|vec a|=|vec b|=|vec b|=|vec c| b.|+|vec b|+|vec c|=|d| c.vec a,vec b, and vec c are coplanar d.none of these

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) vec0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a+ vec b + vec c= 0 , show that vec axxvec b= vec bxx vec c= vec cxx vec a .

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0