Home
Class 9
MATHS
" 11."p(x)=2x^(3)+3x^(2)-11x-3,g(x)=(x+(...

" 11."p(x)=2x^(3)+3x^(2)-11x-3,g(x)=(x+(1)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)+3x^(2)-11x-3,g(x)=(x+(1)/(2)) .

f(x)=x^(3)-6x^(2)+11x-6;g(x)=x-3

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

If f(x)= 2x^(3)+3x^(2)-11x+6 find f(1)

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

If f(x)= 2x^(3)+3x^(2)-11x+6 find f(-1)

If f(x)= 2x^(3)+3x^(2)-11x+6 find f(2)