Home
Class 9
MATHS
(x^(2))/(16)-(y^(4))/(81)" Let us factar...

(x^(2))/(16)-(y^(4))/(81)" Let us factar "

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum area of a triangle formed by any tangent to the ellipse (x^(2))/(16)+(y^(2))/(81)=1 and the cordinate axes is

Factorise : (x^(4))/(16)-(y^(4))/(81)

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

16x^(7)-81x^(3)-16x^(4)+81

((16)/(81))^((-3)/(4)) is equal to

(x-y)(x+y)(x^(2)+y^(2))(x^(4)+y^(4)) is equal ot: x^(16)-y^(16)(b)x^(8)-y^(8)x^(8)+y^(8)(d)x^(16)+y^(16)