Home
Class 12
MATHS
The solution of (x^2+xy)dy=(x^2+y^2)dx i...

The solution of `(x^2+xy)dy=(x^2+y^2)dx` is (A) `logx=log(x-y)+y/x+C` (B) `logx=2log(x-y)+y/x+C` (C) `logx=log(x-y)+x/y+C` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of dy/dx+(xy^2-x^2y^3)/(x^2y+2x^3y^2)=0 , is (A) log(y^2/x)-1/(xy)=C (B) log(x/y)+y^2/x=C (C) log(x^2y)+y^2/x=C (D) none of these

The solution of dy/dx+(xy^2-x^2y^3)/(x^2y+2x^3y^2)=0 , is (A) log(y^2/x)-1/(xy)=C (B) log(x/y)+y^2/x=C (C) log(x^2y)+y^2/x=C (D) none of these

The solution of xy.log((x)/(y))dx+{y^(2)-x^(2)log((x)/(y))}dy =

The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ) (e) x-y (f))+( g ) y/( h ) x (i) (j)+c (k) (l) (m) ( n ) (o)logx=2log(( p ) (q) x-y (r))+( s ) y/( t ) x (u) (v)+c (w) (x) (y) ( z ) (aa)logx=log(( b b ) (cc) x-y (dd))+( e e ) x/( f f ) y (gg) (hh)+c (ii) (jj) (kk) None of these

If x dy/dx=y(logy-logx+1) , then the solution of the differential equation is (A) log(x/y)=Cy (B) log(y/x)=Cy (C) log(x/y)=Cx (D) log(y/x)=Cx

log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y, the x+y2(b)65/8(c)37/6 (d) none of these

If (log)_2x+(log)_x2=(10)/3=(log)_2y+(log)_y2 and x!=y ,the x+y= 2 (b) 65/8 (c) 37/6 (d) none of these

The solution of (2x+4y+3)*(dy)/(dx)=2y+x+1 is 1) log|4x-8y+5|=4x+8y+C 2) log|4x-8y+5|=4x-8y+C 3) log|4x+8y+5|=4x+8y+C 4) log|4x+8y+5|=4x-8y+C

If x^2+y^2=7xy then show that 2log(x+y)=logx+logy+2log3.

If x^y=e^(x-y) , then (dy)/(dx) is (a) (1+x)/(1+logx) (b) (1-logx)/(1+logx) (c) not defined (d) (logx)/((1+logx)^2)