Home
Class 11
MATHS
If (x+i y)^3=u+i v , then show that u...

If `(x+i y)^3=u+i v ,` then show that `u/x+v/y=4(x^2-y^2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^3 = u + iv , then show that u/x+v/y=4(x^2-y^2)

If (x + iy)^3 = u + iv , then show that : u/x+v/y=4 (x^2-y^2) .

If (x + iy)^3 = u + iv , then show that u/x +v/y = 4(x^2 - y^2)

If (x+iy)^(3)=u+iv ,then show that u/x+v/y =4(x^(2) -y^(2)) ?

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^3 = u+iv, then show that u/x+v/y=4( x^3 - y^3 )