Home
Class 12
MATHS
If x=at^3 and y =bt^2, where t is a para...

If `x=at^3` and `y =bt^2`, where `t` is a parameter, then prove that `(dy)/(dx)=(8b)/(27a^3t^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=at^(3) and y=bt^(2), where t is a parameter,then prove that (dy)/(dx)=(8b)/(27a^(3)t^(2))

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

IF x=t^2+2t,y=t^3-3t , where t is a parameter then show that, (d^2y)/(dx^2)=3/(4(t+1)) .

If x= 2at , y= 2a , where t is parameter, then (dy)/(dx) = 1/t . (True/False)

A curve in the xy-plane is parametrically given by x=t+t^(3) and y=t^(2), where t in R is the parameter.For what value (s) of t is (dy)/(dx)=(1)/(2)?(1)/(3) b.2 c.3 d.1

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If x=a(t-(1)/(t)),y=a(t+(1)/(t)) , where t be the parameter, then (dy)/(dx)=?

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)