Home
Class 20
MATHS
f(x)={[1-2x,x<=(1)/(2)," at "x=(1)/(2)],...

f(x)={[1-2x,x<=(1)/(2)," at "x=(1)/(2)],[x-(1)/(2),x>(1)/(2),]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

Prove that, f(x) =(1-2x-x^(2))/(1+x-2x^(2)) continually diminishes as x continually increases.

In [0, 1] the Lagrange's Mean Value Theorem is not applicable to: (a) f(x)={1/2-x ,x<1/2 (1/2-x)^2, xgeq1/2 (b) f(x)=|x| (C) f(x)=x|x| (d) none of these

Let f(x)=x+(1)/(2)x+(1)/(2)x+(1)/(2)x+......oo Compute the value of f(100).f'(100)

f(x)=(1-x+x^(2))/(1+x+x^(2)) decreases in

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -