Home
Class 12
MATHS
" Prove that "|[1,a,b+c],[1,b,c+a],[1,c,...

" Prove that "|[1,a,b+c],[1,b,c+a],[1,c,a+b]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that det[[1,a,b+c1,b,c+a1,c,a+b]]=0

Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a+a b

Using the property of determinants and without expanding , prove that: |[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b]| = 0

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

Using the property of determinants and without expanding, prove that: |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b, c(a+b)]|=0

Prove that: |[1, 1, 1],[a, b, c],[a^2, b^2, c^2]|=(a-b)(b-c)(c-a)

Show that |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b ,c(a+b)]|=0 .

Prove that {:[(1,ab,a+b),(1,bc,b+c),(1,ca,c+a):}]=(a-b)(b-c)(c-a)

Prove that |(1,1,1),(bc,ca,ab),(b+c, c+a, a+b)| = (a-b)(b-c)(c-a)

Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)| = (a-b)(b-c)(c-a)(a+b+c).