Home
Class 11
MATHS
Prove that 1/(n !)+1/(2!(n-2)!)+1/(4!(n...

Prove that `1/(n !)+1/(2!(n-2)!)+1/(4!(n-4)!)+...=1/(n !)2^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that log_(e)((n^(2))/(n^(2)-1))=(1)/(n^(2))+(1)/(2n^(4))+(1)/(3n^(6))+

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that 7^(n)(1+(n)/(7)+(n(n-1))/(7.14)+(n(n-1)(n-2))/(7.14.21)...)=4^(n)(1+(n)/(2)+(n(n+1))/(2.4)+(n(n+1)(n+2))/(2.4.6)...)

Prove that 5^(n) (1+(n)/(5) +(n(n-1))/(5*10) +(n(n-1)(n-2))/(5*10*15)+…oo)=3^(n) (1+(n)/(2)+(n(n+1))/(2*4)+(n(n+1)(n+2))/(2*4*6)+…oo)