Home
Class 12
MATHS
Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13...

Solve : `2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\pi - \left( \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right) \right) \), we will follow these steps: ### Step 1: Use the formula for the sum of inverse sine functions We can use the formula for the sum of two inverse sine functions: \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1}\left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\right) \] This formula is valid when \( x^2 + y^2 \leq 1 \). ### Step 2: Calculate \( \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) \) Let \( x = \frac{4}{5} \) and \( y = \frac{5}{13} \). 1. Calculate \( x^2 + y^2 \): \[ x^2 = \left(\frac{4}{5}\right)^2 = \frac{16}{25}, \quad y^2 = \left(\frac{5}{13}\right)^2 = \frac{25}{169} \] \[ x^2 + y^2 = \frac{16}{25} + \frac{25}{169} \] To add these fractions, find a common denominator: \[ \text{LCM of } 25 \text{ and } 169 = 4225 \] \[ x^2 + y^2 = \frac{16 \cdot 169}{4225} + \frac{25 \cdot 25}{4225} = \frac{2704 + 625}{4225} = \frac{3329}{4225} < 1 \] Thus, we can use the formula. 2. Calculate \( \sqrt{1 - y^2} \) and \( \sqrt{1 - x^2} \): \[ \sqrt{1 - y^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \] \[ \sqrt{1 - x^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] 3. Substitute into the formula: \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{4}{5} \cdot \frac{12}{13} + \frac{5}{13} \cdot \frac{3}{5}\right) \] Calculate: \[ \frac{4 \cdot 12}{65} + \frac{5 \cdot 3}{65} = \frac{48 + 15}{65} = \frac{63}{65} \] Thus, \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{63}{65}\right) \] ### Step 3: Add the third term Now, we need to add \( \sin^{-1}\left(\frac{63}{65}\right) + \sin^{-1}\left(\frac{16}{65}\right) \). Let \( z = \frac{63}{65} \) and \( w = \frac{16}{65} \). 1. Calculate \( z^2 + w^2 \): \[ z^2 = \left(\frac{63}{65}\right)^2 = \frac{3969}{4225}, \quad w^2 = \left(\frac{16}{65}\right)^2 = \frac{256}{4225} \] \[ z^2 + w^2 = \frac{3969 + 256}{4225} = \frac{4225}{4225} = 1 \] Since \( z^2 + w^2 = 1 \), we can use the identity: \[ \sin^{-1}(z) + \sin^{-1}(w) = \frac{\pi}{2} \] ### Step 4: Final calculation Now we have: \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right) = \frac{\pi}{2} \] Thus, \[ 2\pi - \left(\frac{\pi}{2}\right) = 2\pi - \frac{\pi}{2} = \frac{4\pi}{2} - \frac{\pi}{2} = \frac{3\pi}{2} \] ### Final Answer \[ \boxed{\frac{3\pi}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

Solve sin^(-1) (5/x) + sin^(-1)(12/x) = pi/2

Evaluate: cos(sin^(-1)3/5+sin^(-1)5/(13))

sin[2sin^(-1)(4/5)]

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)