Home
Class 12
MATHS
In the matrix A=[[x,1],[1,0]] and A^4=[[...

In the matrix `A=[[x,1],[1,0]]` and `A^4=[[109,a_(12)],[a_(21),a_(22)]]`, then find the value of `a_(22)` is equal to

A

9

B

10

C

11

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the fourth power of the matrix \( A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \) and find the value of \( a_{22} \) in the resulting matrix \( A^4 = \begin{pmatrix} 109 & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \] Calculating the entries: - The (1,1) entry: \( x \cdot x + 1 \cdot 1 = x^2 + 1 \) - The (1,2) entry: \( x \cdot 1 + 1 \cdot 0 = x \) - The (2,1) entry: \( 1 \cdot x + 0 \cdot 1 = x \) - The (2,2) entry: \( 1 \cdot 1 + 0 \cdot 0 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} x^2 + 1 & x \\ x & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^4 \) Next, we compute \( A^4 = A^2 \cdot A^2 \): \[ A^4 = \begin{pmatrix} x^2 + 1 & x \\ x & 1 \end{pmatrix} \cdot \begin{pmatrix} x^2 + 1 & x \\ x & 1 \end{pmatrix} \] Calculating the entries: - The (1,1) entry: \( (x^2 + 1)(x^2 + 1) + x \cdot x = (x^2 + 1)^2 + x^2 \) - The (1,2) entry: \( (x^2 + 1)x + x \cdot 1 = x^3 + x + x = x^3 + 2x \) - The (2,1) entry: \( x(x^2 + 1) + 1 \cdot x = x^3 + x + x = x^3 + 2x \) - The (2,2) entry: \( x \cdot x + 1 \cdot 1 = x^2 + 1 \) Thus, we have: \[ A^4 = \begin{pmatrix} (x^2 + 1)^2 + x^2 & x^3 + 2x \\ x^3 + 2x & x^2 + 1 \end{pmatrix} \] ### Step 3: Set up the equations We know that: \[ A^4 = \begin{pmatrix} 109 & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \] From this, we can equate: 1. \( (x^2 + 1)^2 + x^2 = 109 \) 2. \( a_{12} = x^3 + 2x \) 3. \( a_{21} = x^3 + 2x \) 4. \( a_{22} = x^2 + 1 \) ### Step 4: Solve for \( x \) We need to solve the equation: \[ (x^2 + 1)^2 + x^2 = 109 \] Let \( y = x^2 \). Then we have: \[ (y + 1)^2 + y = 109 \] Expanding this gives: \[ y^2 + 2y + 1 + y = 109 \implies y^2 + 3y + 1 - 109 = 0 \implies y^2 + 3y - 108 = 0 \] ### Step 5: Factor the quadratic equation We can factor this quadratic: \[ (y + 12)(y - 9) = 0 \] Thus, \( y = -12 \) or \( y = 9 \). Since \( y = x^2 \), we discard \( y = -12 \) and take \( y = 9 \): \[ x^2 = 9 \implies x = 3 \quad (\text{since } x \text{ is real}) \] ### Step 6: Find \( a_{22} \) Now, we can find \( a_{22} \): \[ a_{22} = x^2 + 1 = 9 + 1 = 10 \] ### Final Answer Thus, the value of \( a_{22} \) is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(e^(x)) = a_(0) +a_(1)x +a_(2)x^(2)+... ,then find the value of a_ (0)

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

A=([5,1,2],[6,3,4]) find the value of a_(12)+a_(13)-a_(22)"

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

If A=[[3,4,5],[1,6,7],[2,8,3]] ,then the value of a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) is equal to

Matrix A=[(1,2,3),(1,1,5),(2,4,7)] , then the value of a_(31)A_(31)+a_(32)A_(32)+a_(33)A_(33) is

Matrix A =[(1,2,3),(1,1,5),(2,4,7)] then the value of A_(31) A_(31) +a_(32) A_(32) +a_(33)A_(33) is

If A=[(1,1,0),(2,1,5),(1,2,1)] then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23) is equal to

If (1+x-2x^(2))^(6)=1+a_(1)x+a_(2)x^(12)+...+a_(12)x^(12) then find the value of a_(2)+a_(4)+a_(6)+...+a_(12)

If a_(1),a_(2),a_(3) and a_(4) are first four terms of an increasing G.P. such that a_(i)in N AA i in N and sum_(i=1)^(4)a_(i)=4(a_(3)-a_(2))+32 ,then find the value of (a_(2)+(a_(4))/(a_(3)))