Home
Class 12
MATHS
Matrix was given as det [[x-2,2x-3,3x-4]...

Matrix was given as det `[[x-2,2x-3,3x-4],[2x-3,3x-4,4x-5],[3x-5,5x-8,10x-17]]=Ax^3+Bx^2+Cx+D`. Find the value of `B+C`. is equal to

A

-3

B

9

C

-1

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the determinant of the matrix: \[ \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 2x - 3 & 3x - 4 & 4x - 5 \\ 3x - 5 & 5x - 8 & 10x - 17 \end{vmatrix} \] and express it in the form \(Ax^3 + Bx^2 + Cx + D\). We will then find the value of \(B + C\). ### Step 1: Calculate the determinant We will use row operations to simplify the determinant. 1. **Row Operations**: - Let \(R_2 \rightarrow R_2 - 2R_1\) - Let \(R_3 \rightarrow R_3 - 3R_1\) After performing these operations, the matrix becomes: \[ \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{vmatrix} \] ### Step 2: Further simplify the determinant Now we will perform another row operation: - Let \(R_3 \rightarrow R_3 - 3R_2\) This gives us: \[ \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 0 & 1 & 2 \\ 0 & 0 & -5 \end{vmatrix} \] ### Step 3: Calculate the determinant using cofactor expansion Now we can calculate the determinant using the first row: \[ \text{det} = (x - 2) \begin{vmatrix} 1 & 2 \\ 0 & -5 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (x - 2)(1 \cdot (-5) - 2 \cdot 0) = -5(x - 2) \] Thus, we have: \[ \text{det} = -5(x - 2) = -5x + 10 \] ### Step 4: Express in the form \(Ax^3 + Bx^2 + Cx + D\) Now we can express the determinant in the required polynomial form: \[ \text{det} = 0x^3 + 0x^2 - 5x + 10 \] From this, we can identify: - \(A = 0\) - \(B = 0\) - \(C = -5\) - \(D = 10\) ### Step 5: Calculate \(B + C\) Now we need to find \(B + C\): \[ B + C = 0 + (-5) = -5 \] ### Final Answer Thus, the value of \(B + C\) is \(-5\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x, |[x+2,2x+3,3x+4] , [2x+3,3x+4,4x+5] , [3x+5,5x+8, 10x+17]|=0

If x=-3 find the value of 4x^2-5x+3

If det[[x+2,3x+5,4]]=3, find the value of x

Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E the value of 5A+4B+3C+2D+E is equal to

Let |(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(4) + bx^(3) + cx^(2) + dx + e Then, the value of 5a + 4b + 3c + 2d + e is equal to

Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| , then What is the value of c ?

Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then what is the value of c

Let ax^3+bx^2+cx+d=|(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| then what is the value of c