Home
Class 12
MATHS
If y^2+ln(cos^2x)=y, then...

If `y^2+ln(cos^2x)=y`, then

A

`|f''(0)|=0`

B

`|f''(0)+f'(0)|=3`

C

`|f''(0)+f'(0)|=2`

D

`|f''(0)+f'(0)|=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y^2 + \ln(\cos^2 x) = y \), we will perform the following steps: ### Step 1: Rearranging the Equation We start with the equation: \[ y^2 + \ln(\cos^2 x) = y \] Rearranging gives: \[ y^2 - y + \ln(\cos^2 x) = 0 \] ### Step 2: Applying the Quadratic Formula This is a quadratic equation in \( y \). We can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -1 \), and \( c = \ln(\cos^2 x) \). Substituting these values: \[ y = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot \ln(\cos^2 x)}}{2 \cdot 1} \] \[ y = \frac{1 \pm \sqrt{1 - 4\ln(\cos^2 x)}}{2} \] ### Step 3: Finding the First Derivative To find the first derivative \( y' \), we differentiate both sides of the original equation with respect to \( x \): \[ \frac{d}{dx}(y^2) + \frac{d}{dx}(\ln(\cos^2 x)) = \frac{dy}{dx} \] Using the chain rule: \[ 2y \frac{dy}{dx} + \frac{1}{\cos^2 x} \cdot (-2\cos x \sin x) = \frac{dy}{dx} \] This simplifies to: \[ 2y \frac{dy}{dx} - 2\tan x = \frac{dy}{dx} \] Rearranging gives: \[ (2y - 1) \frac{dy}{dx} = 2\tan x \] Thus, \[ \frac{dy}{dx} = \frac{2\tan x}{2y - 1} \] ### Step 4: Finding the Second Derivative Now we differentiate \( \frac{dy}{dx} \) again to find the second derivative \( \frac{d^2y}{dx^2} \): Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(2y - 1)(2\sec^2 x) - (2\tan x)(2\frac{dy}{dx})}{(2y - 1)^2} \] ### Step 5: Evaluating at Specific Points We need to evaluate \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) at specific points. 1. **At \( x = 0 \)**: - \( \tan(0) = 0 \) - From the original equation, when \( x = 0 \), \( \cos(0) = 1 \) and \( \ln(1) = 0 \), so \( y^2 - y = 0 \) gives \( y = 0 \) or \( y = 1 \). 2. **For \( y = 0 \)**: - \( \frac{dy}{dx} = \frac{2 \cdot 0}{2 \cdot 0 - 1} = 0 \) - \( \frac{d^2y}{dx^2} = \frac{(2 \cdot 0 - 1)(2 \cdot 1) - (2 \cdot 0)(2 \cdot 0)}{(2 \cdot 0 - 1)^2} = \frac{-2}{1} = -2 \) 3. **For \( y = 1 \)**: - \( \frac{dy}{dx} = \frac{2 \cdot 0}{2 \cdot 1 - 1} = 0 \) - \( \frac{d^2y}{dx^2} = \frac{(2 \cdot 1 - 1)(2 \cdot 1) - (2 \cdot 0)(2 \cdot 0)}{(2 \cdot 1 - 1)^2} = \frac{2}{1} = 2 \) ### Conclusion Thus, we have: - \( \frac{dy}{dx} = 0 \) at both points. - \( \frac{d^2y}{dx^2} = -2 \) when \( y = 0 \) and \( \frac{d^2y}{dx^2} = 2 \) when \( y = 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(2)+ln cos^(2)x=y, x in((-pi)/(2),(pi)/(2)) then

If ln(x+y)=2x y , then y '(0)?

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y= cos ^(2) (log (2x +3) ), then (dy)/(dx) =

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x^(2))f(y^(2))-(1)/(2)[f((x^(2))/(y^(2)))+f(x^(2)y^(2))] has the value

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is